- Feb 1, 2023
The aliens intiated their attack to the earth! They shoot bullets with mass $m$ and speed $v$ from a far-awar planet. To defend, humans built a field $U=\alpha/r$ that can repel the bullets. What regions are safe? The answer turns out to be the interior of a circular paraboloid.
- Jan 18, 2023
Denote the length distribution of one’s hair to be $f(l,t)$, where $l$ is hair length, and $t$ is time. Considering that each hair may be lost naturally from time to time (there is a probability of $\lambda\,\mathrm dt$ for each hair to be lost within time range from $t$ to $t+\mathrm dt$) and then restart growing from zero length, how will the length distribution of hair evolve with time? It turns out that we may model it with a first-order PDE.
- Nov 15, 2022
By recursively integrating according to $x_{n+1}\!\left(t\right):=\int_{t_0}^tf\!\left(x_n\!\left(s\right),s\right)\,\mathrm ds+C$ from $x_0\!\left(t_0\right):=C$, we can get the solution of the ODE $x’\!\left(t\right)=f\!\left(x\!\left(t\right),t\right)$ with initial conditions $x\!\left(t_0\right)=C$ as the limit of the sequence of functions.
- Nov 11, 2022
The Hölder mean of $\vec x$ with weights $\vec w$ and a parameter $p$ is defined as $M_{p,\vec w}\!\left(\vec x\right):=\left(\vec w\cdot\vec x^p\right)^{\frac 1p}$, and the value at $p=-\infty,0,+\infty$ are defined by the limits. We can prove using Jensen’s inquality that the Hölder mean increases as $p$ increases. This property can be used to prove HM-GM-AM-QM inequalities.
- Nov 6, 2022
By using power series, we can prove that the problem of solving linear homogeneous ODE with constant coefficients can be reduced to the problem of solving a polynomial with those coefficients. This article illustrates this point in detail, but it uses a very awful notation…
- Nov 6, 2022
To heat an object with hot water, if we divide the water into more parts and use each part to heat the object one after another, the final temperature will be higher. If the number of parts tends to infinity, then the final temperature will tend to the limit $T+\mathrm e^{-\frac C{C_0}}\left(T_0-T\right)$, where $T$ is the initial temperature of the object, $T_0$ is the temperature of the hot water, $C$ is the heat capacity of the object, and $C_0$ is the heat capacity of the hot water.
- May 31, 2020
We may generalize Euler–Lagrange equation to higher dimensional optimization problems: find a function defined inside a region to extremize a functional defined as an integral over that region, with the constraint that the value of the function is fixed on the boundary of the region.
- May 14, 2020
Continuing my last work of simulating a mechanical system using RGSS3, I made a new version using rpg_core.js, the game scripting system shipped with RPG Maker MV. This version is live on web!
- Apr 28, 2020
Hamiltonian mechanics gives us a good way to simulate mechanical systems as long as we can get its Hamiltonian and its initial conditions. I implemented this simulation in RGSS3, the game scripting system shipped with RPG Maker VX Ace.
- Apr 12, 2020
A reversible elementary reaction takes place inside a closed, highly thermally conductive container of constant volume, whose reactants are all gases. Given the reaction equations and the reaction rate constants, a natural question to ask is how the concentration of each gas changes w.r.t. time. In this article, I will answer this question by proposing a general approach to solve it.