Some notations

Sn{aRn|jaj=1}. S_n\coloneqq\left\{\mathbf a\in\mathbb R^{n}\,\middle|\,\sum_ja_j=1\right\}.

1(11). \mathbf1\coloneqq\left(\begin{matrix}1\\\vdots\\1\end{matrix}\right).

v1(v1). \mathbf v_1\coloneqq\left(\begin{matrix} \\\mathbf v\\\\1 \end{matrix}\right).

M1(M1T). \mathbf M_1\coloneqq\left(\begin{matrix} \\&\mathbf M&\\\\&\mathbf1^{\mathrm T} \end{matrix}\right).

Introduction to barycentric coordinates

Let vj\mathbf v_j be the vertices of a simplex in Rn1\mathbb R^{n-1}, then any point rRn1\mathbf r\in\mathbb R^{n-1} can be expressed by a tuple λSn\boldsymbol\lambda\in S_n such that r=jλjvj\mathbf r=\sum_j\lambda_j\mathbf v_j.

If regarding V\mathbf V as a (n1)×n\left(n-1\right)\times n matrix whose jjth column is vj\mathbf v_j, then we have r=Vλ\mathbf r=\mathbf V\boldsymbol\lambda.

Along with the normalization condition jλj=1\sum_j\lambda_j=1 or 1Tλ=1\mathbf1^{\mathrm T}\boldsymbol\lambda=1, we have r1=V1λ\mathbf r_1=\mathbf V_1 \boldsymbol\lambda, so

λ=V11r1.\boldsymbol\lambda=\mathbf V_1^{-1} \mathbf r_1. (1)(1)

Usually, due to the convenience, we select the center of the Cartesian coordinate system so properly that jvj=0\sum_j\mathbf v_j=\mathbf0 or

V1=0.\mathbf V\mathbf1=\mathbf0. (2)(2)

The research object

We are going to show that the equation

λTλ=1\boldsymbol\lambda^{\mathrm T}\boldsymbol\lambda=1 (3)(3)

depicts a hyperellipsoid whose center is 0\mathbf0 and its tangent hyperplane at vj\mathbf v_j is parallel to the hyperplane that passes all vk\mathbf v_k that kjk\ne j.

The quadric

We are going to rewrite Formula 3 in the form of a quadric of r\mathbf r.

Substitute Formula 1 into 3, and then we can derive that

1=λTλ=(V11r1)T(V11r1)=r1T((V11)TV11)r1.1=\boldsymbol\lambda^{\mathrm T}\boldsymbol\lambda =\left(\mathbf V_1^{-1} \mathbf r_1\right)^{\mathrm T} \left(\mathbf V_1^{-1} \mathbf r_1\right) =\mathbf r_1^{\mathrm T} \left(\left(\mathbf V_1^{-1} \right)^{\mathrm T}\mathbf V_1^{-1} \right)\mathbf r_1. (4)(4)

Let

Q(V11)TV11=(V1V1T)1,\mathbf Q\coloneqq\left(\mathbf V_1^{-1} \right)^{\mathrm T}\mathbf V_1^{-1} =\left(\mathbf V_1 \mathbf V_1^{\mathrm T}\right)^{-1}, (5)(5)

and substitute Formula 5 into 4, and then we can derive the quadric of r1\mathbf r_1

r1TQr1=1.\mathbf r_1^{\mathrm T}\mathbf Q\mathbf r_1=1.

Note that besides r\mathbf r, there is a 11 in r1\mathbf r_1, so the quadric is a 22nd-degree polynomial of r\mathbf r, including quadratic terms, linear terms and a constant term.

In order to show that the center of the quadric is a hyperellipsoid whose center is 0\mathbf0, we need to prove that the coefficients of the linear terms are all 00, and the determinant of the coefficients is positive.

Proving that the center of the quadric is 0\mathbf0

Note that Q=(V1V1T)1\mathbf Q=\left(\mathbf V_1\mathbf V_1^{\mathrm T}\right)^{-1}, so

Q1=(V11)(1VT1)=(VVTV11TVTn).\mathbf Q^{-1}= \left(\begin{matrix} \\&\mathbf V&\\\\1&\cdots&1 \end{matrix}\right) \left(\begin{matrix} &&&1\\&\mathbf V^{\mathrm T}&&\vdots\\&&&1 \end{matrix}\right)= \left(\begin{matrix} \\&\mathbf V\mathbf V^{\mathrm T}&&\mathbf V\mathbf1 \\\\&\mathbf1^{\mathrm T}\mathbf V^{\mathrm T}&&n \end{matrix}\right). (6)(6)

Substitute Formula 2 into 6, and then we can derive that

Q=(0VVT000n)1=(0W0001n), \mathbf Q=\left(\begin{matrix} &&&0\\&\mathbf V\mathbf V^{\mathrm T}&&\vdots \\&&&0\\0&\cdots&0&n \end{matrix}\right)^{-1}= \left(\begin{matrix} &&&0\\&\mathbf W&&\vdots\\&&&0\\0&\cdots&0&\frac1n \end{matrix}\right),

where W(VVT)1\mathbf W\coloneqq\left(\mathbf V\mathbf V^{\mathrm T}\right)^{-1}, so

r1TQr1=rTWr+1n. \mathbf r_1^{\mathrm T}\mathbf Q\mathbf r_1= \mathbf r^{\mathrm T}\mathbf W\mathbf r+\frac1n.

The linear terms are all 00, so the center of the quadric is 0\mathbf0.

Proving that the quadric is a hyperellipsoid

We need to show that determinant of the coefficients matrix is positive.

Because Q=(V11)TV11\mathbf Q= \left(\mathbf V_1^{-1}\right)^{\mathrm T}\mathbf V_1^{-1}, we have

Q=V112>0. \left|\mathbf Q\right|= \left|\mathbf V_1^{-1}\right|^2>0.

Proving that the its tangent hyperplane at vj\mathbf v_j is parallel to PjP_j

Here PjP_j is defined as the hyperplane that passes all vk\mathbf v_k that kjk\ne j.

The equation of the quadric is F ⁣(r)=0F\!\left(\mathbf r\right)=0, where the quadratic function

F ⁣(r)rTWr+1n1. F\!\left(\mathbf r\right)\coloneqq\mathbf r^{\mathrm T}\mathbf W\mathbf r +\frac1n-1.

According to geometry, the normal vector of the quadric at vj\mathbf v_j is the gradient of FF at vj\mathbf v_j, which is

νjF ⁣(r)rr=vj=2Wvj. \boldsymbol\nu_j\coloneqq \left.\frac{\partial F\!\left(\mathbf r\right)}{\partial\mathbf r}\right| _{\mathbf r=\mathbf v_j}= 2\mathbf W\mathbf v_j.

Now consider the normal vector mj\mathbf m_j of PjP_j. Assume that

Pj:nmjTr+2=0. P_j:n\mathbf m_j^{\mathrm T}\mathbf r+2=0.

The equation of PjP_j should holds when r=vk\mathbf r=\mathbf v_k for all kjk\ne j, so we can derive n1n-1 linear equations with respect to mj\mathbf m_j

kj:nmjTvk+2=0.\forall k\ne j:n\mathbf m_j^{\mathrm T}\mathbf v_k+2=0. (7)(7)

If we can show that

mj=νj=2Wvj\mathbf m_j=\boldsymbol\nu_j=2\mathbf W\mathbf v_j (8)(8)

is the solution to Formula 7, then we can say that the two hyperplane are parallel. Thus, we need to verify the equations derived from substituting Formula 8 into 7

kj:nvjTWvk+1=0, \forall k\ne j:n\mathbf v_j^{\mathrm T}\mathbf W\mathbf v_k+1=0,

which is to say that the n×nn\times n matrix

PVTWV= VT(VVT)1V \mathbf P\coloneqq\mathbf V^{\mathrm T}\mathbf W\mathbf V=\ \mathbf V^{\mathrm T}\left(\mathbf V\mathbf V^{\mathrm T}\right)^{-1} \mathbf V

is such a matrix that all of its components except those on its diagonal are 1n-\frac1n.

According to conclusions in matrix analysis, if we regard VT\mathbf V^{\mathrm T} as n1n-1 nn-dimensional vectors, then P\mathbf P is an orthogonal projection in Rn\mathbb R^n to the linear subspace whose basis is the n1n-1 vectors.

Note that with Formula 2, we can say that the subspace is just a hyperplane whose normal vector is 1\mathbf1. With the conclusion, we can easily write out the form of P\mathbf P because we just need to write out one set of its basis B\mathbf B. Writing out B\mathbf B only requires finding out n1n-1 linearly independent vectors that are perpendicular to 1\mathbf1. For example,

B(n11111n11111n11111n11111). \mathbf B\coloneqq\left(\begin{matrix} n-1&-1&-1&\cdots&-1\\-1&n-1&-1&\cdots&-1 \\-1&-1&n-1&\cdots&-1\\\vdots&\vdots&\vdots&\ddots&\vdots \\-1&-1&-1&\cdots&n-1\\-1&-1&-1&\cdots&-1 \end{matrix}\right).

Then, we have

P=B(BTB)1BT. \mathbf P=\mathbf B\left(\mathbf B^{\mathrm T}\mathbf B\right)^{-1} \mathbf B^{\mathrm T}.

After some calculation, we can derive that the components of P\mathbf P are 11n1-\frac1n on the diagonal and 1n-\frac1n elsewhere, which is what we want to show.

We have proved that the tangent hyperplane of the quadric at vj\mathbf v_j is parallel to PjP_j.