This article is translated from a Chinese article on my Zhihu account. The original article was posted at 2019-07-13 20:36 +0800.
Definition 1. Let fn(z):=(1−z)n+1k=1∑∞knzk, where n is a positive integer.
Our goal is to prove that fn(z) is a polynomial of degree n w.r.t. z, and the sum of its coefficients is n!.
Lemma 1. fn+1(z)=z(1−z)n+2dzd((1−z)n+1fn(z)).
Proof. dzd((1−z)n+1fn(z))=dzdk=1∑∞knzk=k=1∑∞kn+1zk−1=z(1−z)n+2fn+1(z).
□
Definition 2 (Eulerian numbers). ⟨nk⟩:=j=0∑k+1(−1)j(jn+1)(k−j+1)n.
Lemma 2. ⟨n+1k+1⟩=(n−k)⟨nk⟩+(k+2)⟨nk+1⟩.
Proof.
= (n−k)⟨nk⟩+(k+2)⟨nk+1⟩=(n−k)j=0∑k+1(−1)j(jn+1)(k−j+1)n+(k+2)j=0∑k+2(−1)j(jn+1)(k−j+2)n=(n−k)j=0∑k+2(−1)j−1(j−1n+1)(k−j+2)n+(k+2)j=0∑k+2(−1)j(jn+1)(k−j+2)n=j=0∑k+2(−1)j(k−j+2)n((k−n)(j−1n+1)+(k+2)(jn+1))=j=0∑k+2(−1)j(k−j+2)n((k−n)(j−1)!(n−j+2)!(n+1)!+(k+2)j!(n−j+1)!(n+1)!)=j=0∑k+2(−1)j(k−j+2)nj!(n−j+2)(n+1)!((k−n)j+(k+2)(n−j+2))=j=0∑k+2(−1)j(k−j+2)nj!(n−j+2)(n+1)!(n+2)(k−j+2)=j=0∑k+2(−1)j(k−j+2)n+1j!(n−j+2)(n+2)!=j=0∑k+2(−1)j(jn+2)(k−j+2)n+1=⟨n+1k+1⟩.
□
Lemma 3. ⟨n0⟩=1,⟨nn⟩=0.
Brief proof. Easily proved by Definition 2. □
Lemma 4. fn(z)=k=1∑n⟨nn−k⟩zk.
Proof. By mathematical induction. When n=1, fn(z)=z=k=1∑n⟨nn−k⟩zk, the result holds.
Suppose the result holds when n=n0, and then when n=n0+1,
= fn(z)=z(1−z)n0+2dzd((1−z)n0+1fn0(z))=z(1−z)n0+2(1−z)2n0+2dzdfn0(z)(1−z)n0+1−fn0(z)dzd((1−z)n0+1)=z(1−z)n0+2(1−z)2n0+2dzdfn0(z)(1−z)n0+1+(n0+1)fn0(z)(1−z)n0=z(dzdfn0(z)(1−z)+(n0+1)fn0(z))=z((1−z)dzdk=1∑n0⟨n0n0−k⟩zk+(n0+1)k=1∑n0⟨n0n0−k⟩zk)=z((1−z)k=1∑n0⟨n0n0−k⟩kzk−1+(n0+1)k=1∑n0⟨n0n0−k⟩zk)=z(k=1∑n0⟨n0n0−k⟩kzk−1−k=1∑n0⟨n0n0−k⟩kzk+(n0+1)k=1∑n0⟨n0n0−k⟩zk)=z(k=0∑n0⟨n0n0−k−1⟩(k+1)zk−k=0∑n0⟨n0n0−k⟩kzk+(n0+1)k=0∑n0⟨n0n0−k⟩zk)=zk=0∑n0(⟨n0n0−k−1⟩(k+1)zk−⟨n0n0−k⟩kzk+(n0+1)⟨n0n0−k⟩zk)=k=0∑n0(⟨n0n0−k−1⟩(k+1)−⟨n0n0−k⟩k+(n0+1)⟨n0n0−k⟩)zk+1=k=1∑n0+1(k⟨n0n0−k⟩+(n0−k+2)⟨n0n0−k+1⟩)zk=k=1∑n0+1⟨n0+1n0−k+1⟩zk=k=1∑n⟨nn−k⟩zk.(Lemma 1)(supposed)(Lemma 3)(Lemma 2)
Then we can derive that the result is true by mathematical induction. □
Lemma 5. j=0∑n(−1)n−j(jn)jn=n!.
Proof. Because ex−1∼x (in terms of infinitesimal quantity), (ex−1)n∼xn, i.e. (ex−1)n=xn+o(xn) (where o denotes higher order of infinitesimal quantity).
Apply Newton’s binomial theorem to the left-hand side, and we have j=0∑n(−1)n−j(jn)ejx=xn+o(xn). Take nth derivative of the equation, and we have
j=0∑n(−1)n−j(jn)jnejx=n!+o(1). Take x=0, and we have
j=0∑n(−1)n−j(jn)jn=n!. □
Lemma 6. j=0∑n(−1)n−j(jn)(j+1)n=n!.
Proof. (n+1)!=j=0∑n(−1)n−j+1(jn+1)jn+1=j=1∑n(−1)n−j+1(jn+1)jn+1=j=1∑n(−1)n−j+1j!(n−j+1)!(n+1)!jn+1=j=1∑n(−1)n−j+1(j−1)!(n−j+1)!(n+1)n!jn=j=0∑n(−1)n−jj!(n−j)!(n+1)n!(j+1)n=(n+1)j=0∑n(−1)n−j(jn)(j+1)n.(Lemma 5)
□
Lemma 7. k=0∑n⟨nk⟩=n!.
Proof.
= k=0∑n⟨nk⟩=k=0∑nj=0∑k+1(−1)j(jn+1)(k−j+1)n=k=0∑nj=0∑k(−1)j(jn+1)(k−j+1)n=j=0∑nk=j∑n(−1)j(jn+1)(k−j+1)n=j=0∑n(−1)j(jn+1)k=j∑n(k−j+1)n=j=0∑n(−1)j(jn+1)k=1∑n−j+1kn=j=0∑n(−1)n−j(n−jn+1)k=1∑j+1kn=j=0∑n(−1)n−j(j+1n+1)k=1∑j+1kn=j=0∑n(−1)n−j((jn)+(j+1n))k=1∑j+1kn=j=0∑n(−1)n−j(jn)k=1∑j+1kn+j=0∑n(−1)n−j(j+1n)k=1∑j+1kn=j=0∑n(−1)n−j(jn)(j+1)n+j=0∑n(−1)n−j(jn)k=1∑jkn+j=1∑n(−1)n−j+1(jn)k=1∑jkn=n!+j=1∑n(−1)n−j(jn)k=1∑jkn−j=1∑n(−1)n−j(jn)k=1∑jkn=n!.(Lemma 6)
□
Proof of the original proposition. By Lemma 4, fn(z) is a polynomial of degree n in z (Lemma 3 guarantees that the coefficient of the nth degree term is not 0).
The sum of coefficients k=1∑n⟨nn−k⟩=k=0∑n−1⟨nk⟩=k=0∑n⟨nk⟩=n!.(Lemma 3)(Lemma 7) □