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Abstract

In order to conveniently simulate hamiltonian systems, I have developed online software that can
simulate hamiltonianmechanics. Users can see themotion of a system as long as he tells the simulator
the hamiltonian of the system and the initial conditions of it. The simulator can be customized to draw
the graph of generalized coordinates and generalized momenta w.r.t. time, the shape of the motion
(if the generalized coordinates have any geometric meaning), and the phase path. The simulator
can also analyze the oscillation pattern of an oscillator by using FFT to derive the frequency domain
of the motion, presenting a graph of the spectrum. Not limited to classical mechanics, because of
the extendibility of hamiltonian mechanics, the simulator can also simulate special relativity. The
simulator is small and fast and is convenient and easy to operate and customize. The user interface is
simple (a graphics interface for simple basic operations and a console interface for other operations).
The simulator can also output data of the simulated system to create datasets for other potential
usages. There are a lot of applications that can be done with it: it can simulate typical models like
parametric resonance, non-linear oscillators, Kepler’s 2-body problem, adiabatic invariants, scattered
beam of particles, and special relativity.
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1 Introduction
Theoretical mechanics is a subject difficult to study. One can often find that he cannot find out what the motion
of a mechanics system looks like, so he may probably want to see the graph of the motion. A software that can
output the motion of a system as long as the mechanics system is defined is called a mechanics simulator.

There have been a lot of mechanics simulators available on the Internet, but most of them have one of the
following disadvantages:

1. Too massive. Some simulators are really powerful, but the cost is its massive volume. This makes them
unportable.

2. Not convenient enough. Most of the simulators require the user to download the program files into the disk.
This is inconvenient because you have to reinstall the software when you use another device.

3. Not customizable enough. Some simulators focuses on usual models in real life. It may be useful when it
comes to rigid body contact problems. However, it is usually not shipped with functions to simulate systems
like arbitrary central force field or special relativity problems.

4. Unable to output data. Some simulators aims at present how the appearance of the system change, but they
lack a convenient interface to output the very data of the motion of the system.

5. Too difficult to operate. Some powerful simulators have very complicated user interface, which requires the
user to study for hours to being able to operate the simulator and check the result. This is not friendly to
new users.

Because of this, we wanted to create a simulator to solve the problems above. To make it convenient to use, it
should be hosted on a webpage so that everyone with a browser can have access to it as long as he can access the
Internet.

With such a simulator, one can study theoretical mechanics more conveniently. He can have perceptual con-
gnition about specific mechanics systems. The simulator can also be used as animated presentation for physics
education or lecture.
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2 List of symbols
Note that if a symbol has domain A → B, which means a function from set A to set B, then it can sometimes
represent the value of the function and lies in the domainB. In other words, if it says that f : A→ B is a function
w.r.t. x, then f can be a abbreviation of f(x).

We always assume that functions we encounter have good enough properties as long as we need to use this
property.

The list of symbols is shown in Table 1. The list of mathematical operations is shown in Table 2.
Since all quantities are implemented numerically in the computer program as floating numbers, the quantities

do not necessarily share the same units as in the real world but use other more convenient units like pixel or tick,
so the units are not mentioned in the lists.

There are some model-specific symbols mentioned in examples in Section 6. They are not included the the list
of symbols, but their specific meanings are explained in the section.

Table 1: List of symbols

Symbol Domain Meaning Value
t R Time
∆t R+ The increment step of the ODE solver 5× 10−4

ι {2ζ | ζ ∈ Z+} The dimension of the vector in the ODE
x R→ Rι The state of a system w.r.t. t (q,p)
q R→ Rι/2 Generalized coordinates w.r.t. t
p R→ Rι/2 Generalized momentum w.r.t. t
H R× Rι → R Hamiltonian w.r.t. (t,x)

ω Rι×ι A matrix to make symplectic gradients
[

O Iι/2
−Iι/2 O

]
ξ R Abscissa on the canvas, in pixel
η R Ordinate on the canvas, in pixel

mt R→ R The mapping from actual t
to the ξ-coordinate on the canvas

my R→ R The mapping from actual x component
to the η-coordinate on the canvas

w Z+ The width of the graphics screen 1024
h Z+ The height of the graphics screen 768
y R The component of x to be plotted
N Z+ Number of samples to calculate DFT 1× 105
W [0, 1)→ R The window function See Equation 6

Table 2: List of operations

Symbol Name Definition
ḟ Complete derivative1 of f w.r.t. t df

dt
∆f Complete change2 in f when t becomes t+∆t f(t+∆t)− f(t)∑n
j rj Sum of n numbers w.r.t. index j3

∑n−1
j=0 rj

ζ % χ4 Remainder of ζ divided by χ ζ − χ
⌊

ζ
χ

⌋
1Complete derivative means that: if f is a function w.r.t. g, and g is a function w.r.t. t, then ḟ denotes d

dtf(g(t)).
2Complete change is similar to complete derivative. See Footnote 1.
3By conventions in computer science, indices start from 0 instead of 1. The convention will be followed in the article.
4This notation is from conventions in computer science.
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3 Physics theory
3.1 Predicting dynamics
A dynamics system’s motion can be predicted using some ordinary differential equations (ODE) in form of

ẋ = f(t,x) , (1)

where f : R × Rι 7→ Rι is a function related to the specific system, and ι is some positive integer which should
unnecessarily be the degree of freedom (DOF) of the system (it is actually 2 times DOF in our case).

3.2 ODE solver
This ODE (Equation 1) can be solved numerically using the Runge–Kutta method5

∆x ≈ ∆t
s∑
j

bjKj , (2)

where Kj is defined recursively as [10, p. 907]

Kj := f

(
t+∆t

j∑
k

aj,k,x+∆t

j∑
k

aj,kKk

)
. (3)

The smaller ∆t is, the more precise and the less efficient the solver is.
The order number s and the coefficients bj and aj,k are specific for different Runge–Kutta methods. Here the

3/8-rule [5, p. 138] is adopted. The coefficients of it is shown in Table 3.

Table 3: The coefficients of Runge–Kutta method 3/8-rule

aj,k bj
aaaaa
j k 0 1 2 3

0 1/6
1 1/3 1/3
2 −1/3 1 1/3
3 1 −1 1 1/8

TheODE solver should store t and x, and every time it increments, log (t,x) and let x← x+∆x and t← t+∆t.
The ODE solver can give the numerical value of x at any t as long as the numerical form of f and a initial value

x(0) is given.

3.3 Constructing ODE
Only an ODE solver does not help with simulating a dynamics. The ODE is required. According to the theorems
in physics, there are a lot of methods to construct the ODE of a dynamics system. Here the hamiltonian method is
adopted.

5The algorithm can be expressed more briefly using Ruby programming language:

dx = b.zip(a).each_with_object([]).sum do |(bj, aj), ary|
bj * ary.push(f.(t+aj.sum*dt, x+aj.zip(ary).sum{_1*_2}*dt)).last

end * dt
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The hamiltonian mechanics states that, for some dynamics system, there exists a function H : Rι × R → R :
(t,x) 7→ H(t,x) such that the motion of the system satisfy the equation called canonical equation6

ẋ = ω∇xH, (4)

where ω∇x denotes the symplectic gradient w.r.t. x.
Under the circumstance of hamiltonian mechanics, the vector x ∈ Rι can be separated into two vectors q ∈

Rι/2 and p ∈ Rι/2, which are respectively the generalized coordinates and generalized momentum of the
system, so the components of x can be called q0 , q1 , p0 , p1 , etc..

Since the gradient∇xH can be calculated numerically easily, we can give the numerical form of f in Equation
1 according to

f(t,x) := ω∇xH (5)

and can thus solve Equation 1 numerically according to the method described in Section 3.2.

3.4 Analyzing the frequency domain of the motion
When we study the periodical motion of a dynamics system, it is usually interesting to study its frequency domain.
Therefore, we want the simulator to be shipped with the ability to show the Fourier transformation (FT) of the
motion (on an interval of time [0, N∆t)). Because we do this numerically, and t is actually discrete, so what we
calculate is actually the discrete Fourier transformation (DFT).

The FFT library mentioned in Section 4.2 provides the method to calculate the DFT. Although we can just pick
a time interval long enough and calculate its DFT, the operation can result in some loss in the frequency domain
[7]. We should apply a window function to the motion on the interval before calculating DFT.

There are various window functions candidates, each of which have its unique application scenes. Here the
Hamming window function [7]

W (ζ) :=
25

46
− 21

46
cos(2πζ) (6)

is adopted because it fits with most cases.

y(t)

[0, N∆t)

W
(

t
N∆t

)
y(t)

F
{
t 7→ W

(
t

N∆t

)
y(t)

}
(s)

Figure 1: The process of deriving the frequency domain

4 Libraries used by the simulator
Our simulator depends on some third-party libraries.

The graphics library is used to show graphs on the screen.
6The canonical equation is usually denoted as

q̇ =
∂H
∂p

, ṗ = −∂H
∂q

in other books [6][2, p. 65][9, p. 132].
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The FFT library is used to calculate the DFT of the motion of the system.
The ODE constructor and ODE solver is written by us, independent to third-party libraries. The theories about

them are explained in Section 3.

4.1 Graphics library
We use rpg_core.js to draw and show graphs. It is a web game engine based on PixiJS. Although rpg_core.js is
shipped with RPG Maker MV, which is not a free software, it is open-source on GitHub.

In rpg_core.js, a Bitmap object is used to store the info of a picture, and a Sprite object is used to present
the picture depicted by a Bitmap . The coordinates info etc. are also in the Sprite [1]. Figure 2 shows how
rpg_core.js shows a picture.

Screen

ξ

η

(ξ0, η0)

Memory

sprite

x: ξ0
y: η0
bitmap:…

bitmap

Figure 2: How rpg_core.js shows a picture

The x and y property of a Sprite can be adjusted to move a picture.
rpg_core.js also provides methods to fill a rectangular region on a Bitmap with a certain color. This enables

us to set the color of pixels on a Bitmap and can thus draw graphs.

4.2 FFT library
A FFT library implements the fast Fourier transformation (FFT) algorithm. The FFT library we use is FFTW, which
is written in C. Since we need to use it on the webpage, we used emscripten to import it.

5 Plotting the graph
According to the theories described in Section 3, a program can be designed to give the generalized coordinates q
and generalized momentum p at any t according to the input hamiltonianH and initial values q(0) and p(0).

However, a person can hardly figure out the patterns in the motion by just looking at a bunch of (t,x) pairs.
To make it easier to find out the patterns, the simulator should be capable of plotting a graph according to the
(t,x) pairs.

To be more specific, for each component y of x, on the ξ-η plane (the canvas), the point (mt(t) ,my(y)) should
be plotted. The introduction of mt and my is because the coordinates on the canvas are in pixel, which is a small
unit. Another purpose of mt and my is to make it possible to use nonlinear scales like logarithmic scale.
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5.1 Scrolling the graph
Since people often want to simulate a system for a long time, which makes the graph very wide, so the canvas
should be much wider than the screen. Then we must make the canvas scroll as the simulator simulates the
system.

Although nowadays computers can draw pictures on the screen very fast and can redraw it every 1/60 seconds,
the read-write operations to the Bitmap is time-consuming. Therefore, here we implement a scroll algorithm
similar to Carmack scroll algorithm. Using this method, the computer only need to change one pixel on the
Bitmap instead of tens of thousands of them every time when the ODE solver increments.

The algorithm requires 2 sprites, respectively called sprite 1 and sprite 2, both of which shows a bitmap of
width w and height h (so there are 2 bitmaps altogether), where w and h are also the width and height of the
graphics screen.

sprite 1sprite 2

(mt (t) % w,my (y))

Screen

ξ

η∆mt

Figure 3: How the sprites move and the bitmaps are plotted as the ODE solver increments

When the ODE solver increments, sprite 1 and sprite 2 move left by∆mt. Now, the coordinates of sprite 1 are
(w − (mt(t) % w) , 0), and the coordinates of sprite 2 are (− (mt(t) % w) , 0). Fill the pixel at (mt(t) % w,my(y))
on the bitmap of sprite 1. This process is shown in Figure 3.

When the two sprites move left enough, sprite 1 touches the left side of the screen. At this moment, sprite
2 suddenly moves to the right to sprite 1, clears its bitmap, and exchange its name with sprite 1. This process is
shown in Figure 4.

5.2 Presenting the frequency domain of the motion
In Section 3.4, it is said that we need to be able to analyze the frequency domain of the motion. Since the frequency
domain is often discrete and sparse, and the high-frequency region is often almost zero, it is better to spread out
the low-frequency region across the width of the screen and connect adjacent points with lines.

Because rpg_core.js does not ship with a method drawing a straight line on the bitmap, we need to implement
an algorithm to draw straight lines. Here Bresenham’s line algorithm [4] is adopted.

6 Guides for operating
When you open the webpage, it will start simulating the default model, which is a 1-dimensional vibration with
parametric vibration [9, p. 82] and alternating external force [9, p. 61]

H(t, q, p) = p2

2
+ ω2 (1 + u cos(γt)) q

2

2
− fq cos(κt+ β) , (7)
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sprite 1sprite 2
clears bitmap and moves

Screen

ξ

η

(a) Sprite 2 suddenly clears its bitmap and moves
sprite 2 sprite 1

Screen

ξ

η

(b) Sprite 1 and sprite 2 swap their names

Figure 4: How the sprites suddenly move and swap

where
(u, γ, β, κ, ω, f) = (0.3, 21.7, 0.2, 8, 10, 20) ,

and the initial conditions are
(q, p) = (2, 0) .

The frequency domain calculator feature is enabled. After some time, when there have accumulated enough
samples, the simulator will create buttons at the up-left corner of the screen clicking which will make it show the
time domain to be FFTed and the calculated frequency domain.

In the interface of frequency domain, the line colored the same as the button represents the real part of the
FFT result, and the line colored gray represents the imaginary part of the FFT result.

Hit  to pause or resume the simulation.
Figure 6 shows the graphics interface of the simulator. From the result of the simulation, it seems that we can

indeed learn something about the pattern of the motion. The frequency domain is very clear.
As described in Section 1, the simulator is highly customizable. You can customize the simulation by coding

in the console7.

6.1 Downloading the motion data
The simulator will not record the history of the ODE solver by default. To ask the simulator to record the history,
run the following codes.

rungeKutta.recordHistory = true;
restart();

Wait the ODE solver for some time for it to accumulate enough data, and then run the following codes to
download the simulated data.

7For most browsers, hit F12 to have access to the console. The interface of the console panel usually looks like Figure 5.
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Figure 5: The console panel of Chrome browser [3]

rungeKutta.downloadHistory(0, 30);

Replace 0 and 30 with the ends of interval of time during which your desired data was simulated out.
Omitting the 2 parameters will make it download all data accumulated so far.

6.2 Changing the parameters of the default model
For instance, now we want to study the pattern of parametric resonance. For a parametric vibration model, when
γ ≈ 2ω, the condition for it to reach parametric resonance is8 [9, p. 82]

|γ − 2ω| < 1

2
ωu. (8)

We want to study how the motion looks like when it reaches parametric resonance. We can let f := 0 to
cancel the external force and let γ := 21.3 to make the system meet the condition of parametric resonance. Then,
run restart() .

f = 0;
gamma = 21.3;
restart();

6.3 Changing the initial conditions
The initial conditions x(0) can be set to a customized one by running the following codes.

rungeKutta.initial = [2, 0];
restart();

Change [2, 0] into any initial conditions you like.

8Precision to O (u).
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(a) The simulated motion of the default model (b) The frequency domain of p of the default model

Figure 6: The screenshots of the simulator simulating the default model

6.4 Changing the scale
It can be found that the amplitude indeed grows in an exponential pattern as predicted by theorems. Since expo-
nential growth is very fast, the graph soon exceeds the screen. We can use logarithmic scale to prevent this. This
can be done by changing my using the following codes.

canvas.mappingY = y => 20 * log1p(abs(y)) * sign(y) + Graphics.height/2;
restart();

Now my(y) := 20 ln (1 + |y|) sgn y + h/2. Note that in the codes, Graphics.width stands for w and
Graphics.height stands for h.

The result of the simulation of the parametric resonance can be seen in Figure 7. It can be seen that the
amplitude is indeed growing exponentially.

(a) The parametric resonance phenomenon is simu-
lated

(b) Using logarithmic scale to prevent the amplitude
growing too fast

Figure 7: The simulator simulating the parametric resonance

6.5 Disabling analysis of frequency domain
You can also disable the frequency domain analysis using the following codes. After running the codes, there will
not be buttons appearing at the up-left corner to indicate the availability of the frequency domain.
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Figure 8: The phase path of the parametric resonance in logarithmic scale

canvas.detectPeriod = false;
restart();

6.6 Advanced: drawing the phase path
A phase path is the graph representing the motion of the phase point x [9, p. 146][2, p. 68].

The simulator has an API to allow the user to run custom codes as the ODE solver increments. To draw the
phase path, first you need to create a Sprite and a Bitmap by following the codes below.

var phaseSprite = new Sprite();
phaseSprite.bitmap = new Bitmap(Graphics.width, Graphics.height);
scene.addChild(phaseSprite);

Then, change canvas.onTrace to run custom codes when a new point is added, and restart() .

canvas.onTrace = (t, qp) => {
phaseSprite.bitmap.setPixel(...qp.map(canvas.mappingY), 'white');
return true;

};
restart();

If you want, you can hide the original canvas by running canvas.visible = false; , and you can clear
the phase path at any time by running phaseSprite.bitmap.clear(); .

Figure 8 shows the result of the codes above.
The line should be continuous at the edge of each period of the phase path, but the phase point moves so fast

that the simulator cannot trace it continuously. The discrete points seem to form curves across the phase path, as
can be seen in Figure 8. What are the equations for them? It seems that the simulator can inspire us to ask such
questions and encourage us to study something like this about physics.

6.7 Change the hamiltonian into a nonlinear oscillator
The user can assign a function value to the variable rungeKutta.func to change the f in Equation 1. To create
the f according to the hamiltonian using Equation 5, using the function canonicalEquation , with the first
argument be the DOF, and the second argument be the hamiltonian function.

One example is to change the hamiltonian of the default model into that of a nonlinear oscillator

H(t, q, p) := p2

2
+

ω2
0q

2

2
+ αq3 + βq4
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Figure 9: The frequency spectrum of a nonlinear oscillator (higher frequencies are not shown)

by running the following codes. Before applying the codes, if you have runned some codes above, refresh the
webpage9 to have a clean environment to prevent the modifications above affecting.

rungeKutta.func = canonicalEquation(1, (t, qp) => {
let [q, p] = qp;
return p**2/2 + omega0**2*q**2/2 + alpha*q**3 + beta*q**4;

});

The parameters (ω0, α, β) should be defined. Assume that we take

(ω0, α, β) := (10,−2,−3) ,

then we can run the following codes.

var omega0 = 10;
var alpha = -2;
var beta = -3;

If we take the initial conditions as (q, p) = (1, 0) using the following codes, the amplitude is now taken as
b = 1.

rungeKutta.initial = [1, 0];

We can use the simulator to verify the formula for calculating the frequency of the nonlinear oscillator [9, p.
87]10

ω = ω0 +

(
3β

2ω0
− 15α2

4ω3
0

)
b2 = 9.535.

The frequency spectrum is shown in Figure 9. As can be seen, the frequency is roughly the theoretically
predicted value ω

2π = 1.518, different from the linear one ω0
2π = 1.592.

7 Examples
The default model and the typical customizations to it presented in Section 6 are good examples of the application
of the simulator.

Here are some other examples. The codes of the examples can also be seen on the webpage.

7.1 Kepler’s 2-body problem
2-body problems are systems with 4 DOF. The hamiltonian of the model to be simulated is

H(t, q0, q1, q2, q3, p0, p1, p2, p3) := p20 + p21 + p32 + p23 −
500√

(q0 − q2)
2 + (q1 − q3)

2
.
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(a) The graph of x, 8 curves in total (b) Visualization (c) Frequencies of q0

Figure 10: The simulator simulating Kepler’s 2-body problem

Run the following codes and you will get 2 stars move around each other.

// There are 8 curves to be drawn on the canvas
canvas.n = 8;
// Setting the hamiltonian of the system
rungeKutta.func = canonicalEquation(4, (t, qp) => {
let [x1, y1, x2, y2, px1, py1, px2, py2] = qp;
return px1**2 + py1**2 + px2**2 + py2**2 - 500 / hypot(x1-x2, y1-y2);

});
// Setting the initial conditions of the system
rungeKutta.initial = [-3, -3, 3, 3, 2, -3, -2, 3];
// Setting the scale of the graph
canvas.mappingY = y => 20 * y + Graphics.height/2;
// Setting the colors for graphing; there are 8 curves and thus 8 colors
canvas.colors = ["white", "yellow", "pink", "blue",

"green", "purple", "red", "magenta"];

// Following codes creates the sprites and bitmaps for visualization
// (Using API provided by rpg_core.js, see [1] for help)
var traceSprite = new Sprite();
var star1 = new Sprite();
var star2 = new Sprite();
scene.addChild(traceSprite);
scene.addChild(star1);
scene.addChild(star2);
traceSprite.bitmap = new Bitmap(Graphics.width, Graphics.height);
star1.bitmap = star2.bitmap = new Bitmap(4, 4);
star1.bitmap.fillAll('orange');
star1.anchor.x = star1.anchor.y = 0.5;
star2.anchor.x = star2.anchor.y = 0.5;

// Updating the state of the sprites when a new sample comes out
canvas.onTrace = (t, qp) => {

// Setting the position of sprites of stars
[star1.x, star1.y, star2.x, star2.y] =

qp.slice(0, 4).map(canvas.mappingY);
// Plotting the trajectory
traceSprite.bitmap.setPixel(star1.x, star1.y, 'cyan');
traceSprite.bitmap.setPixel(star2.x, star2.y, 'cyan');
return true;

};

// Restarting to apply the changes

9For most browsers, the shortcut of refreshing is to hit F5.
10Precision to O

(
b2
)
.
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restart();

The simulated result is shown in Figure 10.
If the user is curious, the hamiltonian or the initial conditions can be modified a little to create interesting

graphs.
The line rungeKutta.initial = [-3, -3, 3, 3, 2, -3, -2, 3]; can be modified to apply

different initial conditions. For different initial conditions, the trajectory can appear as a different shape. If we
change 2, -3, -2, 3 into 5, -2, -5, 2 , the trajectory is hyperbola as shown in Figure 11.

The line return px1**2 + py1**2 + px2**2 + py2**2 - 500 / hypot(x1-x2, y1-y2);

can be modified to apply a different hamiltonian to the system. If you change x1-x2 into 1.5*x1-x2 , what
you get is a chaotic motion as shown in Figure 11.

(a) The code x1-x2 is changed into
1.5*x1-x2

(b) The code x1-x2 is changed into
1.1*x1-x2

(c) The code 2, -3, -2, 3 is changed into 5, -2, -5, 2

Figure 11: The Kepler’s 2-body problem model is modified
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7.2 Adiabatic invariants
The action variable of a periodic 1-dimensional system is an adiabatic invariant, which does not vary when the
parameters in hamiltonian change slowly [2, p. 298][9, p. 156].

A system related to adiabatic invariance is a little difficult to imagine. We want to use the simulator to show
how adiabatic invariants work. The codes shown below can be modified to simulate other systems related to
adiabatic invariance.

Here the example adopted is the harmonic oscillator with its frequency altering slowly. The hamiltonian is

H (t, q, p) =
p2

2
+ ω(t)2

q2

2
,

where ω(t) := 4 + 0.05t changes slowly w.r.t. t.
By the definition of the action variable, we can derive that the action variable for the harmonic oscillator is [2,

p. 300][9, p. 157]
I =
H
ω
.

We are going to make the canvas draw graph for I andH. Run the following codes.

// The altering parameter omega mentioned above; it should change slowly
var omega = t => 4 + 0.05 * t;
// The hamiltonian of the system
var hamiltonian = (t, qp) => qp[1]**2/2 + omega(t)**2 * qp[0]**2/2;
// Setting the hamiltonian of the system
rungeKutta.func = canonicalEquation(1, hamiltonian);
// There are 8 curves to be drawn on the canvas
canvas.n = 4;
// The labels of the curves will be q, p, H, I
canvas.getLabelString = i => 'qpHI'[i];
// The colors for the curves
canvas.colors = ["white", "yellow", "pink", "blue"];
// Tracing the H and I data when a new sample comes out
canvas.trace = function (t, data) {

// Calculating the hamiltonian at this time
let h = hamiltonian(t, data);
// To be drawn on the graph at this time: [q, p, h, h/omega]
data = data.concat([h, h / omega(t)]);
// Calling old method, a JavaScript trick
return this.__proto__.trace.call(this, t, data);

};
// Restarting to apply the changes
restart();

The definition of the slowly altering parameter and the hamiltonian is marked with comments. Feel free to
modify them to simulate other systems with adiabatic invariants.

Figure 12 shows the result. As can be seen, the same as theoretically predicted, while ω and thus H changes
slowly, I does not vary.

7.3 Scattered beam of particles
Suppose there is a beam of identical particles being shot toward a central force field. Each of the particles of the
beam has hamiltonian

H(t, q0, q1, p0, p1) = p20 + p21 +
30√

q20 + q21
.

The beamwill be scattered, and particles with different impact parameter will have different angle of scattering
[9, p. 49]. We want to study this phenomenon using the simulator.

15



Figure 12: The adiabatic invariant of a harmonic oscillator with slowly changing parameter

The simulation can be done using the codes below. Note that on low-performance devices, the simulation is
slow because there are 30 motions to be simulated at the same time.

// The total number of particles in the beam
var n = 30;
// The array of the n ODE solvers
rungeKuttas = [];
for (let i = 0; i < n; i++) {

// Create an ODE solver
rungeKuttas[i] = RungeKutta.solveHamiltonian(

// Parameters list:
2, // DOF
[-20, (i - n/2)*0.3, 4, 0], // Initial conditions
Number.POSITIVE_INFINITY, // Maximum time
null, // Canvas; null for no canvas
(t, qp) => { // The hamiltonian

let [x, y, px, py] = qp;
return px**2 + py**2 + 30/hypot(x,y);

}
);

}

// Create the sprite and bitmap for visualization (rpg_core.js API)
var traceSprite = new Sprite();
scene.addChild(traceSprite);
traceSprite.bitmap = new Bitmap(Graphics.width, Graphics.height);

// The scale to be used for graphing
var my = y => 20 * y + Graphics.height/2;
// This is the function to be called at each frame refreshing
update = function () {
for (let i = 0; i < n; i++) {

// Calculate the coordinates of the point to be plotted
let xy = [0, 1].map(j => my(rungeKuttas[i].current[j]))
// Plotting the trajectory
traceSprite.bitmap.setPixel(...xy, 'white');
// Incrementing ODE solvers
rungeKuttas[i].update();

}
};

// Restarting to apply the changes
restart();
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// Hiding the original canvas
canvas.visible = false;

Figure 13: The trajectories of the scattered particles

The result of the codes above can be seen in Figure 13.
The effect of scattering forms a graph rather beautiful. It can be seen that the envelope of the trajectories of the

particles looks like a conic section, which is not thought about before we simulate it. Then, we can be curious about
what is the equation for the envelope because it is meaningful as it indicates the safe place where the particles will
not reach.

Simple simulation like this can inspire us to study about physics. This is exactly one of the major usages of the
simulator.

One can also study how the initial velocity of the beam of the particle and the field intensity affects the trajec-
tories. We can use the simulator to verify that as the initial velocity decreases or the field intensity increases, the
trajectories will be more bending.

The line [-20, (i - n/2)*0.3, 4, 0], specifies the initial conditions for the i th particle, and the
line return px**2 + py**2 + 30/hypot(x,y); specifies the hamiltonian of a particle. We can change
the codes 4, 0 into 3, 0 to make trajectories more bending, and change the codes 30/hypot(x,y) into
20/hypot(x,y) to make trajectories less bending, as can be seen in Figure 14.

7.4 Special relativity
Not only classical mechanics, the simulator can simulate special relativity mechanics because relativity mechanics
can be depicted by hamiltonian mechanics. Consider a relativistic particle exerted on by a uniform force, which
has hamiltonian [8, p. 28]

H(t, q, p) :=
√

p2 + 10− 0.8q

and initial conditions (q, p) = (−10,−10).
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(a) The codes 4, 0 are replaced with
3, 0 , and the curves become more bending

(b) The codes 30/hypot(x,y) are replaced with
20/hypot(x,y) , and the curves become less bending

Figure 14: The parameters of the model of scattered beam of particles is modified

The result of the simulation is shown in Figure 15. The particle travels with its momentum uniformly growing,
and its speed is nearer and nearer to that of light as t→∞, as predicted theoretically [8, p. 24].

Figure 15: The motion of a relativity particle in uniform gravity field

8 Conclusion
We have developed a convenient online software that can simulate hamiltonian mechanics. There are a lot of
applications that can be done with it.

The simulator is a mechanics simulator. After the user input a hamiltonian and the initial conditions of the
system, the simulator can simulate the motion of the system, graph the motion of it on the screen. If a vibrating
system is being simulated, the simulator can also calculate the frequency domain of the motion using FFT after
enough samples have been calculated out.

The simulator has the following advantages:

1. Very small and fast. The simulator is rather simple but efficient. A user with a well-connected computer
can start simulating mechanics in seconds without any preparation.

2. Very convenient. Anyone with browser and Internet access can have access to the simulator without the
requirement of downloading program files into the disk. The simulator is based on HTML and the programs
is written in JavaScript which is supported by almost all browsers.
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3. Highly customizable. Everything of the simulator can be customized at ease. The simulated model, the
parameters of the ODE solver, the way the simulator presents the system, etc. can all be customized.

4. Being able to output data. The simulated data can be output to create mechanics datasets. The created
datasets can be used to study the pattern of a system or be analyzed by a third-party software.

5. Being easy to operate. All that the user need to do to operate the system is to write simple JavaScript codes
in the console and click on the screen. The coding is very easy. If advanced usage is not needed, a user
without programming experience only needs a few minutes to learn to use it.

The simulator can be used to study motions of hamiltonian systems, learn classical theoretical mechanics,
create animation image for presentation related to physics or online physics courses, and create dataset of motions
of a hamiltonian system.

Wewrote the default model for illustrating the basic applications, mentioned in Section 6, and mentioned some
other examples for proposing some further applications in Section 7.

It is available on a webpage.

19

https://UlyssesZh.github.io/rpg/mechsimul2


References
[1] Rpg maker mv help.

[2] V. I. Arnolʹd, K. Vogtmann, and A. Weinstein. Mathematical methods of classical mechanics. Springer, 2nd
edition, 1989.

[3] K. Basques. Console overview, 2020.

[4] F. L. Gaol. Bresenham algorithm: Implementation and analysis in raster shape. Journal of Computers, 8(1),
2013.

[5] E. Hairer, S. P. Nørsett, and G. Wanner. Solving ordinary differential equations I: Nonstiff problems. Springer,
2008.

[6] L. N. Hand and J. D. Finch. Analytical mechanics. Cambridge University Press, 2008.

[7] F. J. Harris. On the use of windows for harmonic analysis with the discrete fourier transform. Proceedings of
the IEEE, 66(1):51–83, 1978.

[8] L. D. Landau and L. E. M. The classical theory of fields. Butterworth Heinemann, 2010.

[9] L. D. Landau, L. E. Mikhaĭlovich, J. B. Sykes, and J. S. Bell. Mechanics. Butterworth-Heinemann, 3rd edition,
1976.

[10] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical recipes: the art of scientific
computing. Cambridge University Press, 2007.

20


	Introduction
	List of symbols
	Physics theory
	Predicting dynamics
	ODE solver
	Constructing ODE
	Analyzing the frequency domain of the motion

	Libraries used by the simulator
	Graphics library
	FFT library

	Plotting the graph
	Scrolling the graph
	Presenting the frequency domain of the motion

	Guides for operating
	Downloading the motion data
	Changing the parameters of the default model
	Changing the initial conditions
	Changing the scale
	Disabling analysis of frequency domain
	Advanced: drawing the phase path
	Change the hamiltonian into a nonlinear oscillator

	Examples
	Kepler's 2-body problem
	Adiabatic invariants
	Scattered beam of particles
	Special relativity

	Conclusion
	References

